Die Idee dieses Verfahrens ist, daß die Lösung des symmetrisch definierten Systems
![]() |
(5.56) |
zugleich das Funktional
![]() |
(5.57) |
wegen
![]() |
(5.58) |
minimiert. Man versucht also anstelle der sonst üblichen `gezielten' Lösung von (5.56) das Minimum des quadratischen Funktionals zu finden. Im Laufe des Verfahrens der konjugierten Gradienten wird dieses Minimum iterativ bestimmt, wobei man zur schrittweisen Verbesserung der aktuellen Lösung den Gradienten von verwendet.
Bekanntlich weist der Gradient einer Funktion immer in Richtung der lokal stärksten Zunahme des Funktionswertes. Weil das Funktional zu minimieren ist, zeigt die Auswertung der Beziehung (5.58) für daher den denkbar ungünstigsten Weg zur Verbesserung der aktuellen Lösung an. Es ist deshalb sehr naheliegend, die dem Gradienten entgegengesetzte Richtung zur Festlegung einer sogenannten Relaxationsrichtung zu verwenden. In dieser unternimmt man dann eine noch zu ermittelnde Anzahl von Einheitsschritten zur Verbesserung der aktuellen Lösung.
Zu Beginn der Iteration bestimmt man aus einer beliebigen Startlösung eine erste, bessere Näherung gemäß
![]() |
(5.59) |
Die Schrittweite ergibt sich ebenfalls aus der Lösung einer Extremalaufgabe. Sie paßt die Beziehung (5.59) an die Minimumbedingung für an:
![]() |
(5.60) |
![]() |
(5.61) |
Die nun folgenden Iterationsschritte unterscheiden sich ein wenig von dem ersten Schritt. Hierzu betrachte man die folgenden Beziehungen
![]() |
(5.62) |
Aus der letzten Gleichung läßt sich bereits ohne die Kenntnis von analysieren. Von entscheidender Bedeutung ist dabei der zweite Summand , der den Anteil der zuletzt gewählten Relaxationsrichtung an dem ''zukünftigen'' Residuum (= Rest) beziffert. Nun ist es sinnlos, einen Anteil des Residuums nochmals zu erzeugen, indem man ähnlich wählt. Falls der Anteil der -ten Verbesserung am Gradienten von von Null verschieden ist, sollte man diese Information dahingehend nutzen, die Lösung in der zu diesem Anteil senkrechten Richtung zu verbessern. Wir fordern also
![]() |
(5.63) |
worunter die Mathematiker die Konjugiertheit von und verstehen.
Natürlich verwendet man zur Bestimmung der Verbesserung (Relaxationsrichtung) auch das zuletzt berechnete Residuum , die Konjugiertheit von und stellt lediglich eine zu erfüllende Nebenbedingung für den Ansatz
![]() |
(5.64) |
mit
![]() |
(5.65) |
dar.
Die Schrittweite ergibt sich wieder aus (5.60). Der Algorithmus vereinfacht sich, wenn man (5.62)
Die einfachste Idee, ein Problem mit unsymmetrischer, nicht positiv definiter Koeffizientenmatrix mit Hilfe des CG-Verfahrens zu lösen, ist, anstelle des ursprünglichen Problems
1. quadratisch,
2. positiv definit.
Hieraus ergibt sich eine zweite Anwendungsmöglichkeit dieses Gedankenspiels, nämlich seine Verwendung auf überbestimmte Probleme wie sie z.B. bei der Wirbelstärke-Geschwindigkeitsformulierung der Navier-Stokes Gleichung auftreten:
Die faktische Quadrierung der Koeffizientenmatrix ist jedoch extrem rechenintensiv, weswegen man die Koeffizienten von in der Praxis nicht vorab explizit berechnet, sondern die Erweiterung des ursprünglichen Problems direkt in die CG-Prozedur einarbeitet (CG-Ausgleichsverfahren):