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THE SHIFTED PROPER ORTHOGONAL DECOMPOSITION:
A MODE DECOMPOSITION FOR MULTIPLE TRANSPORT
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Abstract. Transport-dominated phenomena provide a challenge for common mode-based model
reduction approaches. We present a model reduction method, which is suited for these kinds of
systems. It extends the proper orthogonal decomposition (POD) by introducing time-dependent
shifts of the snapshot matrix. The approach, called shifted proper orthogonal decomposition (sPOD),
features a determination of the multiple transport velocities and a separation of these. One- and
two-dimensional test examples reveal the good performance of the sPOD for transport-dominated
phenomena and its superiority in comparison to the POD.
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1. Introduction. Model reduction is an important method for deriving low-di-
mensional models from experimental or numerical data. These reduced-order models
often allow fast simulations commonly used for control, optimization, and parameter
studies and are nowadays a necessary tool in many fields. Further, these models yield
a better understanding of the dynamical process by identifying the essential dynamics.
Formally, the goal is to obtain a low-dimensional description, which approximates the
mapping from a set of inputs to a set of outputs. Among others, inputs can be design
parameters, system conditions, or controls. Common outputs are performance or
physical quantities like measurements or even full flow solutions.

A major class of reduced-order modeling approaches is given by input-output
interpolation methods, which do not aim to reduce the internal dynamics but which
are only based on the input-output behavior, usually described by a transfer function
(see [2, 5, 21, 29] and references therein). These methods are successfully applied to
linear systems, but extensions to nonlinear systems are rare and have some drawbacks,
such as low computational efficiency (cf. [18]).

In contrast, the most common model reduction techniques for nonlinear systems
are based on a superposition of modes describing the system state. Examples are
reduced basis methods [15, 16, 20, 38, 44], balanced proper orthogonal decomposition
(POD) [43, 46], dynamic mode decomposition [12, 39, 42], and POD [23, 32], which
technically reduces to a singular value decomposition (SVD). The SVD provides the
best low-rank approximation of a matrix with respect to the 2-norm. Depending on
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the application, the POD has several synonyms, as for instance, principal component
analysis [25] or Karhunen–Loeve decomposition [14]. The number of modes needed
to obtain a sufficiently accurate approximation of the system in question is crucial
for the computational cost of evaluating the reduced-order model (online stage) and
accordingly for its usefulness. Furthermore, nonlinear reduced-order models are often
combined with hyperreduction methods, e.g., EIM [4] or DEIM [11], to achieve an
efficient offline/online decomposition [22].

Transport-dominated phenomena are usually a challenge for mode-based meth-
ods, since their dynamical behavior cannot be captured accurately by a few spa-
tial modes in a dyadic structure (cf. [13, 28]). Recently, there have been some
efforts to invent model reduction methods suitable for the efficient description of
transport-dominated phenomena. Usually some time-dependent shift is introduced
to compensate the transport. It is used in the framework of symmetry reduction (cf.
[6, 17, 31, 37]), where the translation is accounted for by applying a Lie group action
to a symmetry-reduced or frozen solution. In [31], for instance, the framework has
been analyzed for nonlinear parameter-dependent evolution equations and applied to
a numerical simulation of the Burgers equation. A different approach is presented
in [24], where the transport is incorporated by using a coordinate mapping which is
related to the solution of Monge–Kantorovich optimal mass transport problems. The
approach is illustrated by means of snapshots of shallow water waves and of a hurri-
cane. A methodology based on L1-norm minimization has been applied in [1], which
shows much better results for hyperbolic problems than the commonly applied L2-
norm minimization of the error. The minimization is based on a set of dictionaries
which are computed in an offline phase. There are various other approaches which aim
to efficiently reduce transport phenomena; see, for instance, [9, 10, 19, 30, 40, 41, 45].

Multiple transport velocities are less studied. Just one shift as is used in most of
the cited works is not sufficient if different transport velocities are present, as is com-
mon in technical applications. An efficient and general model reduction methodology
for multiple transport phenomena is still missing. With this contribution we aim at
improving this situation by introducing the shifted proper orthogonal decomposition
(sPOD).

The key tool of the new approach is a time-dependent shift in combination with a
procedure to separate different transports within the system. The dominant transport
velocities are determined by front tracking or by considering the dependence of the
singular values of the shifted snapshot matrix on the time-dependent shift. This shift
structurally extends the dyadic structure of POD to systems with transport and allows
thereby a better approximation. The method is purely data based in contrast to the
symmetry reduction methods, offering a wide range of applicability.

In this paper, we focus on obtaining a very low-dimensional representation of the
solution. The corresponding low-dimensional subspace can be used to build a reduced-
order model, for instance, by an interpolation procedure as in [26] or by a Galerkin
projection of the original model. However, the construction of a reduced-order model
is not within the scope of this paper.

During the review process we became aware of the work [36], which is similar to
this work using SVDs in different velocity frames. The authors of [36] utilize a greedy
approach in order to decompose snapshot matrices with multiple transport velocities.
They consider the linear wave equation with two transported quantities and their
method was shown to yield a decomposition with just a few modes outperforming the
POD. However, the greedy approach is not able to describe this linear transport with
the minimum number of modes indicated by the analytic solution. This is because
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structures which are extracted by the first greedy iteration cannot be reattributed
to a different velocity frame, which is necessary to obtain low-rank approximations
for hyperbolic cases with multiple transports. In contrast, this flexibility is given
by the new sPOD algorithm which is able to decompose the same example with the
minimum number of modes and thus finds the analytic solution up to any given
achievable tolerance (cf. section 2.2).

In the following section, we motivate and derive the method by means of examples
in a one-dimensional domain, which are a challenge for common model reduction
techniques as the POD. For this, first we consider one moving signal and show how to
reduce it. Then, a more complex system with two different transports is considered
and a procedure is derived to separate the different velocity components. Then the
detection of the velocities is discussed and a case of crossing shocks is investigated.
In section 3 we apply the new method to a two-dimensional test case from fluid
mechanics with transported developing vortex pairs with nontrivial velocities. Finally,
we conclude and give an outlook on ongoing and future work.

2. One-dimensional model problems. In this section, first the idea of the
sPOD approach will be developed considering a one-dimensional example. As a test
problem, the linear wave equation

∂tρ+ ρ0∂xu = 0,

∂tu+ c2/ρ0∂xρ = 0,
(1)

is considered on a periodic domain x = (0, L]. Here, u is the velocity, ρ is the density
(fluctuation), ρ0 is a reference density, and c is the speed of sound. The general
solution can be written as

q(x, t) =

[
ρ (x, t)
u (x, t)

]
= q+(x− ct)

[
ρ0
c

]
+ q−(x− (−c)t)

[
ρ0
−c

]
(2)

with arbitrary initial conditions q±(x) for the two transported quantities, the Riemann
invariants. The corresponding transport velocities are c± = ±c. By choosing

q±(x− (±ct)) =
1

2

∞∑
n=0

βn cos(kn(x− (±ct)) + Θn),(3)

with kn = n 2π/L, the solution can be rewritten as

q(x, t) =

∞∑
n=0

βn

[
ρ0 cos(kn ct) cos(kn x+ Θn)
c sin(kn ct) sin(kn x+ Θn)

]
(4)

with constants βn and Θn. Every nonzero amplitude βn yields a mode of a vibrating
string. For the remainder of this paper, we set ρ0 = 1, c = 1, and L = 1.

As stated in section 1, model reduction methods often build on describing a
dynamical system by a superposition of a small number of modes. One of the most
popular approaches is the POD, which aims at approximating the solution by a linear
combination of orthonormal modes φl

q(xi, tn) ≈
∑
l

αl(tn)φl(xi)(5)
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with time-dependent coefficients αl. Usually, a snapshot matrix Xij = q(xi, tj) is
introduced, which is a space-time-discretized solution. A low-dimensional represen-
tation minimizing the approximation error in the 2-norm is determined via an SVD
of the snapshot matrix X. Often the numerical affort of the SVD is decreased by
reducing the set of discrete time and spatial points [3] in a way that does not sig-
nificantly effect the quality of the modes, i.e., the dynamical behavior of the system
still needs to be captured. The squared singular values determine the mean square
amplitude of the corresponding modes, which coincides with the kinetic energy if the
mode represents the velocity [27]. Consequently, strongly decaying singular values
allow a good representation with a few modes.

The ability of the POD to describe the solution of (1) eminently depends on
the initial condition. If a vibrating string with a dominant frequency and a few
harmonics is chosen, i.e., as in (4) with a few dominant βn, the POD will find these few
modes and, consequently, it will deliver an accurate low-dimensional representation.
However, if a transported quantity with high gradient is given, i.e., as in (2) with
strongly localized initial conditions q±, the singular value decay is rather gradual and
one is forced to use a high number of modes to get a reasonable description. This
variability makes the example well-suited to develop a method, which can handle
transported quantities while including the classical POD as a special case.

2.1. One transported quantity. Setting q−(x) = 0 in the solution (2) of
the linear wave equation (1) leads to a single transported quantity, which is given
by a shift of the initial condition q+ with the transport velocity c. To provide a
challenging case for POD, a sharp Gaussian pulse of q+(x) = exp(−(x − x0)2/δ2) is
chosen with δ = L/50. The analytic solution is shown in Figure 1, left, for the time
interval [0, 1.25L/c]. For the discrete snapshot matrix Xij = q(xi, tj), we chose 250
equidistant time and 200 space points. In this subsection we only consider the density,
if not stated otherwise.

For the considered example, a very slow decay of the singular values is observed
(cf. Figure 1, left). Even though the analytic solution can be formulated by only one

Fig. 1. Single transported quantity. Left: Singular value decay (outer picture) and density
in the space-time diagram (inner picture). The spectrum shows a very slow decay. Right: If the
solution is described in a co-moving frame, i.e., the solution is shifted at every time to compensate
the transport, the singular spectrum shows a rapid decay. One mode is sufficient to describe the flow
(apart from a small numerical error of the shift procedure).
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transported Gaussian pulse, many POD modes are needed for a good representation.
The reason for this is that the structure (5) is not adequate to describe a solution
of the form (2). Roughly speaking the dyadic products describe rectangular (with
respect to the space-time diagram) structures well, while diagonal structures such
as in Figure 1, left, cannot be well represented as a dyadic product. This explains
the common failure of the mode-based model reduction for transport phenomena (cf.
[9, 36]). However, if the velocity is known or can easily be detected, the solution is
near at hand. A time-dependent shift which compensates the transport velocity yields
a structure that can be written as a single dyadic product, which in turn corresponds
to the description by just one mode, Figure 1, right.

To this end, we introduce the continuous shift operator T cf (x, t) := f (x− ct, t)
acting on a function f (x, t). The discrete analogue of T c is denoted with T c (·) which
acts on a snapshot matrix of a time- and space-dependent function and shifts the ith
column by cti in space. Thus, for one transport we seek approximations

q(xi, tn) ≈ T c
(∑

l

αl(tn)φl(xi)

)
.(6)

Clearly such an approximation can be constructed by applying the inverse shift T−c

into the co-moving frame and performing an SVD. For our example of the single
transported quantity, we obtain T−c (q(x, t)) = q(x, 0), which is described by one
mode. Note that this shift demands an interpolation in the general case where cti is
not an integer multiple of the grid size. Note further that the approach also works
with a nonconstant transport velocity, since the shift can be set for each time step
separately.

In a similar manner, shifts have been used in other reduction frameworks, e.g.,
for the model reduction of a combustion [26] and in a symmetry reduction framework
[6, 17, 37]. The latter one treats partial differential equations (PDEs) which are
equivariant with respect to a group action which in turn induces symmetries in the
solution space. Symmetry-reduced surrogate models on the PDE level are obtained
by exploiting the equivariance of the original PDE. In contrast, we are looking for
a general decomposition of a snapshot matrix by shifted modes without requiring
equivariance of the original PDE or symmetries in their solutions.

2.2. Multiple transported quantities. Many relevant systems feature mul-
tiple transported quantities. We extend (6) to a multiframe decomposition of the
form

q(xi, tn) ≈
Ns∑
k=1

T ck

(∑
l

αkl (tn)φkl (xi)

)
,(7)

where Ns is the number of transport velocities. We seek to decompose a given space-
time field into this structure. To this end, a best fit of (7) in the vector 2-norm will be
used, where the ansatz modes will be constructed by shifting and reducing the field
data to identify low-rank structures in each co-moving frame. The reduction and best
fit are iterated to decrease the cross-influence between the different transports and to
obtain a clear separation.
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Fig. 2. The density of two transported quantities, the left and right going waves. MS&R (top
left: full-order solution; top right: error of (8); bottom left: right going component of MS&R; bottom
right: left going component of MS&R).

To illustrate the new approach for problems with multiple transports, we consider
the solution (2) of the wave equation (1) with

q+ = q− = exp(−(x− L/2)2/(L/50)2),

which describes a pressure pulse in a system initially at rest. The analytic solution of
the density for these two transported quantities is shown in Figure 2, top left. Due
to the solution structure (cf. (2)), it is known that the full information is described
by just two modes. Ideally, a model reduction approach should detect these modes.
However, while the solution structure is known in this special case, we refrain from
using details of it. The desired method should find such modes purely data-based.
In this way, such a procedure is expected to work also for nonhyperbolic transport.
For the remainder of this subsection, we assume the transport velocities to be known,
while in section 2.3 methods of determining transport velocities based on the snapshot
data are discussed.

To identify good ansatz modes, recall that in the case of one transported quantity
it is well described by the first modes in a co-moving system, while a decomposition of
structures in a different velocity frame leads to the need of many modes to describe the
dynamics reasonably well. Consequently, the first mode has an inferior contribution to
the dynamics, if the shift velocity does not agree with one of the transport velocities.
Thus, a naive approach to decompose different velocity components is given by the
following procedure.
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Multi-Shift & Reduce (MS&R)

Input :
• j × n snapshot matrix X with n (temporal) snapshots of j grid points
• transport velocities ck, k = 1, . . . , Ns, Ns number of shift velocities

Procedure:
1. Shift & Decompose

Compute the SVDs

UkΣk(V k)T = T−ck (X)

with Uk ∈ Rj,j , Σk ∈ Rj,n, and V k ∈ Rn,n for k = 1, . . . , Ns. Here, T−ck

denotes the discrete shift operator; cf. end of section 2.1.
2. Truncate

Approximate the matrix UkΣk(V k)T by neglecting the singular values σr+1,
. . ., σmin(k,n), where r is chosen as small as possible but as large as necessary
to obtain a good approximation. This leads to the approximate SVDs

ŨkΣ̃k(Ṽ k)T ≈ UkΣk(V k)T

with Ũk ∈ Rj,r, Σ̃k ∈ Rr,r, and Ṽ k ∈ Rn,r for k = 1, . . . , Ns.

Altogether MS&R

MS&R : X → Σ̃k, Ũk, Ṽ k

produces modes containing parts of the field which can be represented well in the
respective velocity frame. A naive approximation of the original field would then be
given by

X ≈ X̃ =

Ns∑
k=1

T ck
(
ŨkΣ̃k(Ṽ k)T

)
.(8)

If the matrices would contain only information of the associated velocity frame this
approximation could be exact. In general a perfect decomposition is not to be expected
and instead parts of the field are overrepresented.

The result of applying this procedure to the pressure pulse example is shown in
Figure 2, bottom, where we applied MS&R with r = 1 in each velocity frame. MS&R
leads to an approximate identification of the respective velocity component, since
this dominates the respective first mode, while the other velocity component gives
a relatively small contribution. The reconstruction is done according to (8) and the
error is shown in Figure 2, top right.

While the main structures are reproduced well, the result is far from perfect.
Especially, in the region where the left and right going pulses overlap, a large error
is produced. These strongly localized structures with respect to space and time are
represented well in both velocity frames, since a point structure is nearly unchanged by
a shift and can be described perfectly by a dyadic product. This ambiguity impedes
the separation of the two transported quantities. Furthermore, the quality of the
solution cannot be improved by adding modes, since this counteracts the separation.
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To improve the decomposition, a new algorithm is presented in the following
which is referred to as the sPOD algorithm. The MS&R identifies by construction
low-rank structures in each velocity frame. These are used to create a set of ansatz
modes to optimize the approximation (7) of the field in a least squares sense. To
this end, the error or residual is decomposed by MS&R to identify the part of the
error, which can be represented in each velocity frame. Finally, the decomposition is
iteratively improved. An implementation of the sPOD algorithm and the numerical
examples considered in this paper are available from [34].

The sPOD algorithm

Input :
• j × n snapshot matrix X with n (temporal) snapshots of j grid points
• transport velocities ck, k = 1, . . . , Ns, Ns number of shift velocities

Procedure:
1. Initialize j × n matrix X̃ = 0, j × r matrix Ũk = 0, n× r matrix Ṽ k = 0

loop
2. calculate residual

R = X − X̃

3. use MS&R to create ansatz modes

MS&R : R→ Σkr , U
k
r , V

k
r

4. optimize in a least squares sense

min
αk,αk

r

∥∥∥X̂ −X∥∥∥2
2

with

(9) X̂ =

Ns∑
k=1

T ck
(
Ũkαk(Ṽ k)T + Ukr α

k
r (V kr )T

)
,

where αk and αkr are diagonal coefficient matrices of appropriate dimensions
5. calculate new modes by SVD

UkΣk(V k)T = Ũkαk(Ṽ k)T + Ukr α
k
r (V kr )T

and truncate it as in step 2 of MS&R

ŨkΣ̃k(Ṽ k)T ≈ UkΣk(V k)T

6. update approximation

X̃ =

Ns∑
k=1

T ck
(
ŨkΣ̃k(Ṽ k)T

)
until ‖R‖2 does not reduce further

Due to the initialization, the first decomposition is MS&R of the original field.
In further steps the residual is reduced by providing modes which are constructed by
MS&R of the residual and allow removing structure which is multiply accounted for.
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For example, the strong peaks in the residual in Figure 2 are prominently visible in
the residual modes Ukr and can be used to remove this error to a large degree. The
iteration in sPOD offers the possibility to remove it up to any achievable tolerance.

An open question is how to choose the r in the MS&R for each frame in an
optimal way. For cases where r is not clear from physical considerations, we propose
two different heuristics.

One method is to perform the sPOD decomposition with a large number of modes
per frame and select the most important ones afterward. This is done by sorting the
singular values of all reference frames in one list and choosing the modes associated
with the largest singular values. If a certain approximation error is prescribed, one has
to calculate the residual from the reconstruction. It cannot, however, be calculated
from the singular values directly, due to the nonorthogonality of modes belonging to
different frames.

An alternative way of choosing r is to start with small numbers of modes and
successively add modes in a greedy fashion. We explain this in more detail with an
example of three reference frames and starting with zero modes for each frame, i.e.,
r0 = [0 0 0], where rk denotes the vector containing the numbers of modes of each
velocity frame after the kth greedy iteration. At the first iteration, different sPOD
approximations are computed for r = [1 0 0], r = [0 1 0], and r = [0 0 1]. The errors
of the three different sPOD approximations are compared and we add only one mode
to that frame which corresponds to the smallest error, for instance, r1 = [0 1 0] if
the comparison shows the greatest advantage of adding a mode to the second frame.
This procedure can be continued until a certain error tolerance is achieved and can be
implemented as a loop around the sPOD algorithm. Of course, the greedy algorithm
is based on a locally optimal choice which does not guarantee that the resulting vector
r is optimal. Furthermore, this approach can be quite costly if the amount of data and
the number of frames are big since the sPOD algorithm has to be performed multiple
times. Nevertheless, in the considered numerical examples the greedy algorithm yields
sPOD approximations with high accuracy while only using a small number of modes
per frame.

The sPOD algorithm is tested for the density of the acoustic pulse with one mode
per frame. The convergence behavior can be seen from the solid graph of Figure 3,
left, where the convergence is indicated by the decreasing mean error over iterations.
The considered error measure is given by the 2-norm of the error divided by the
2-norm of the full-order snapshot matrix, i.e.,

(10) mean error =

∥∥∥X − X̃∥∥∥
2

‖X‖2
.

Some remarks follow.

Fig. 3. Two transported quantities. Left: Convergence of the sPOD algorithm (2 modes). The
error of the sPOD approximation decreases to less than 5× 10−13. Right: Full-order solution of the
density, sPOD approximation, and the error (note the color scale).
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1. While in the first iterations the sharp structures allow a good separation of
the different transport directions, the residual tends to lose this structure. The inter-
ference of the components of different velocity create a broad structure, visible as the
broad diagonal stripes in Figure 2. This tends to slow the convergence after the first
iterations.

2. For the considered example, the analytic solution has the form of two modes,
each in a different frame, i.e., X = T c1(u1σ1(v1)T ) + T c2(u2σ2(v2)T ). This allows
us to consider the modes from the initial MS&R as the modes of the exact solution
perturbed by the component of the respective other velocity frame. For example, for
the first frame of reference, the shifted snapshot matrix is

T−c1(X) = u1σ1(v1)T + T c2−c1(u2σ2(v2)T ).

Assuming the perturbation T c2−c1(u2σ2(v2)T ) to be small, the perturbed singular
values and vectors can be expressed as a linear perturbation of the unperturbed ones
with δσ1 = (u1)T δX1v1 and δu1σ1 = δX1v1−u1δσ1 characterizing the linear change
of σ1 and u1. For the considered pressure pulse example, the mode obtained by
MS&R is well approximated by ũ1 ≈ u1 + δu1. This suggests that the exact mode
is indeed dominant in its reference frame and the component of the other frame
is approximately a linear perturbation. The broad stripes in Figure 2 are thereby
explained as an overlap of the exact mode and the mode of the other frame in the
respective velocity frame.

3. Broad structures in the residual can be better resolved with more modes.
Therefore, increasing the number of modes r in the MS&R for the residual tends to
result in an improved convergence. Indeed, we have observed for the wave equation
with some less sharp initial conditions that choosing r = 1 prevents the procedure
from converging to the analytic solution. For these examples increasing the number of
residual modes r improves convergence and results in finding the analytic solution up
to any given achievable tolerance. However, there is a trade-off between convergence
and computational effort, both of which have to be accounted for when choosing the
number of residual modes.

4. The ansatz in (9) can also be extended so as to include cross terms of the
form U i(V j)T with i 6= j. This can be achieved by optimizing over dense coefficient
matrices αk and αkr rather than over diagonal ones. We have observed that this often
leads to a faster convergence of the sPOD iteration which is due to the increased
number of degrees of freedom for the optimization in step 4 of the sPOD algorithm.
Nevertheless, we omit the cross terms for reasons of computational effort. The number
of unknowns in the resulting system of linear equations to be solved in step 4 would
scale with Nsr

2 instead of Nsr. This is a minor issue for examples in one dimension
but it leads to high computing times when dealing with the two-dimensional example
presented in section 3.

5. As an alternative to reducing the different velocity frames simultaneously, one
could proceed sequentially by removing the detected structures in a greedy fashion.
This is done in the recent work [36]. It is clear from Figure 2 that after the first
iteration each of the modes contains structure from the respective other velocity frame.
However, due to the greedy character these artifacts are not removed, since the modes
from the first iteration remain unchanged. As a consequence, the sequential procedure
does not reduce to descriptions with just one mode per velocity frame in the pressure
pulse example. Moreover, the obtained modes do not reflect the physics of two moving
waves properly, which might also be disadvantageous for model reduction.
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Fig. 4. Two transported quantities (only density): Comparison of full-order solution with sPOD
and POD approximation (left: full-order solution; middle: sPOD approximation (2 modes); right:
POD approximation (2 modes)).

The error of approximation obtained by the sPOD algorithm after 40 iterations
is shown in Figure 3, right. As can be seen, the solution is approximated excellently
by just two modes. This is the desired low-dimensional representation we have been
looking for, agreeing with the analytic solution given by two modes. Note that since
only the density was provided, the Riemann invariants cannot be calculated, sug-
gesting that the construction did not implicitly use the hyperbolic structure of the
equation.

The good performance of the sPOD algorithm gets more striking when comparing
it to the standard POD. For this purpose, Figure 4 depicts the comparison between
the full-order solution, the sPOD approximation with two modes, and the POD ap-
proximation with two modes. It is obvious that the POD approximation is highly
inadequate, whereas the sPOD approximation matches the full solution excellently.
To obtain the same accuracy as the two sPOD modes (error less than 3 × 10−14;
cf. blue, solid graph in Figure 3, left), more than 80 POD modes are required. Fur-
thermore, if only two POD modes are used, the relative mean error, as defined in (10),
is almost 1. Of course, this insufficient performance of the POD was to be expected,
since deliberately we have chosen an example which provides a big challenge for the
POD. Nevertheless, this test case which is generic for many practical problems gives
a first impression of the potential of the proposed sPOD.

For all the considerations made so far, the reduction was based on the density
alone. When considering the density and the velocity together, the convergence of
the sPOD algorithm appears to be faster even though the eventually achieved error
is somewhat higher but the order of magnitude is 10−13 (see Figure 3, left). Apart
from the convergence behavior, the results for the case that density and velocity are
considered together are very similar to the results shown before and therefore omitted.

2.3. Determination of the shift velocities. If the shift velocities are un-
known, different strategies can be used to obtain good candidates for them. This is
largely independent of the sPOD, which is the main focus of this paper, but important
for practical use. Often physical insight reveals (some of) the involved velocities, i.e.,
the flow or sound velocity. The main target of the sPOD is the decomposition of
strongly transport-dominated cases. This class of problems is especially interesting
since classical methods like the POD fail here most severely; see, e.g., [9]. In these
cases the transport velocities can often simply be determined by usage of data-based
tracking of peaks or threshold values within the snapshot matrix. Another method
is discussed in the following, where the velocity detection is performed via a maxi-
mization of singular values. The tracking-based method is applied in the example of
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Fig. 5. The singular value spectrum of the density snapshot matrix as a function of the shift
velocity. Left: The pressure pulse, which creates two traveling waves with the speeds c± = ±1, which
are clearly visible as maxima of the leading singular value. Right: The standing wave. The zero
velocity has the biggest leading singular value. The positive and the negative sound speed are also
visible as local maxima.

section 2.5, while the velocities of the example in section 3 are determined by means
of the singular value maximization.

A purely data-driven method is obtained by examining the singular value spec-
trum of the shifted snapshot matrix as a function of the shift velocity, i.e., the (con-
stant) velocity the time-dependent shift is based on. In Figure 5, left, the spectrum of
shifted snapshot matrices of the example considered in section 2.2 is shown for a range
of shift velocities between −1.25 and 1.25. First, it should be noted that, assuming
periodic boundaries, the square integral of the solution∫ tend

0

∫ L

0

(q(x, t))2dxdt

does not change by a shift in the x-direction. A numerical approximation of the shift
keeps this invariance up to the interpolation error. Consequently, the Frobenius norm,
which is directly connected with the singular values by

‖X‖2F =
∑
i,j

X2
i,j =

∑
i

σ2
i ,

is also shift-invariant up to the interpolation error. This allows us to directly compare
spectra for different shift velocities. If a certain singular value increases by a change of
shift velocity, others have to decrease to keep the sum of the squared singular values
constant. The transport velocities, which are the positive and the negative sound
velocity c± = ±1, are clearly visible from the maxima of the leading singular value.
The classical POD is recovered for a shift velocity of zero, where a slow decay of the
singular values can be seen in Figure 5, left. The shift dependence of the pressure pulse
case is contrasted with the case of a standing wave, Figure 5, right. Here the zero shift
velocity leads to a maximization of the leading singular value. However, the sound
velocities are also visible as local maxima. The standing wave can be represented by
two traveling waves with velocities ±c, so that these are also reasonable candidates
for shift velocities. It should be noted that the spectra are only a first indicator. If
multiple transport velocities are involved, each of the transported quantities influences
the singular spectra of the others. For instance, the pressure pulse can be expressed
by one mode per transport velocity, which is not obvious from Figure 5, left, since
each of the transported quantities slows the decay of the singular spectrum of the
other one. The simple sampling used here can be replaced by a gradient method,
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since a change of singular values with respect to a change of the matrix can easily be
calculated, similar to the considerations in remark 2 following (10).

2.4. Uniqueness and robustness of the method. For the case Ns = 1 and
c1 = 0 in (7), the sPOD reduces to the classical POD and hence for this special
case an optimal approximation is given due to the optimality of the SVD. A simple
counterexample shows that such a global optimality cannot be guaranteed for the
sPOD in general. Consider again the pressure pulse example from section 2.2 and add
a third velocity c3 = 0 to the sPOD algorithm. Since the solution can be described
perfectly by the two moving modes, the zero velocity frame is redundant. However,
we can describe the analytic solution also by adding a harmonic mode to the zero
velocity frame and compensate for this by adding appropriate components to the two
co-moving frames; cf. (3) and (4). Accordingly, the analytic solution allows different
but equivalent low-dimensional representations. Adding a mode in the zero frame and
subtracting from the Riemann invariants does not change the composed solution, e.g.,

q(xi, tn) = T c
([
ρ0
c

]
q+ (x)

)
+ T−c

([
ρ0
−c

]
q− (x)

)
= T c

([
ρ0
c

]
(q+ (x)− cos (k1x))

)
+ T−c

([
ρ0
−c

]
(q− (x)− cos (k1x))

)
+ 2T 0

([
ρ0 cos (k1ct) cos (k1x)
c sin (k1ct) sin (k1x)

])
.

This shows that the separation is not unique and all of these solutions are fix points of
the sPOD iteration. Indeed, the numerical experiments show that the sPOD algorithm
does not remove the component of the zero velocity frame but instead converges to a
solution which is represented as a sum of the three provided frames. The accuracy is
still comparable to the sPOD just using the two co-moving subspaces. This means that
the sPOD is not optimal in the sense that a minimum total number of modes is not
guaranteed. Note that a decomposition based on three modes is still much better than
the classical POD in this example. One could think of strategies to enforce removing
redundant information, for instance, by augmenting the least squares approach in step
4 of the sPOD algorithm with an `1-norm regularization (see, e.g., [8]). However, this
exceeds the scope of this paper.

If the transport velocity is not determined correctly but with a small error, an
increased number of modes is required to obtain the same accuracy as with the cor-
rect transport velocity. However, as can be seen in Figure 5, the leading singular
value decreases continuously from the maxima. Hence, small errors from the velocity
detection lead to a small increase of the required number of modes. This growth de-
pends essentially on the width of the maximum. A sharp maximum, i.e., a maximum
exhibiting a strong decay of the leading singular value close to it, requires a precise
velocity determination. On the other hand, sharper maxima are also easier to deter-
mine, which suggests that also for these cases a sufficiently accurate determination of
the dominant transport velocity is possible with the presented method.

2.5. Two crossing shocks. In this section we consider a more physical and
challenging example: The crossing of two shock waves. The example of two crossing
shocks is a generic phenomenon which occurs in many applications. The noncon-
stant shock velocities and amplitudes are inherently nonlinear and change during the
crossing of the shocks. However, this is not a problem for the sPOD decomposi-
tion which can also work with variable velocities. To this end, the shift operator
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Fig. 6. Full-order solution of two crossing shocks: Pseudocolor plots of the density (left),
velocity (middle), and pressure (right).

introduced in section 2.1 is generalized to account for time-dependent velocities by
replacing the linear expression ct by a general time-dependent shift coordinate xsh (t),

i.e., T xsh

f (x, t) := f
(
x− xsh (t) , t

)
.

The Euler equations for an ideal gas with constant heat capacity are simulated
by the skew-symmetric scheme with a shock filter, as described in [35]. The nonlinear
shock filter [7] chooses the filter strength on the basis of a shock detector. The
initial condition is ρ = [1.0138, 0.6000, 1.0138], u = [−96.2197,−310.0174,−523.8264],
p = [1.2720, 0.6000, 0.2720], yielding two shocks colliding with a shock Mach-number
of Ma = 1.4. The shocks are at x = [1/3, 2/3]. The initial shock structure is chosen to
have a near steady state with the given shock filter. The adiabatic exponent is γ = 1.4.

The simulated solution is depicted in Figure 6 for the density, the velocity, and the
pressure. The depicted space-time diagrams represent the transposes of the respective
snapshot matrices which are used as an input of the sPOD algorithm. The snapshots
have been normalized such that the highest occurring absolute value of each quantity
is equal to one to avoid numerical errors due to the different scales. In contrast to the
examples before, the case of two crossing shocks exhibits nonperiodic boundaries. This
leads to the situation that we need values from outside of the computational domain
when shifting the snapshot matrix. We treat this here by a constant extrapolation
over the boundaries, while a general treatment of nonperiodic boundaries within the
sPOD framework will be addressed in a future work.

We are looking for a decomposition of the snapshot matrices with a prescribed
relative error tolerance of one percent. To apply the sPOD the time-dependent shift
needs to be determined. Here, we apply a simple threshold search within the snapshot
matrix of the velocity. More precisely, we define two threshold values characterizing
the velocity jumps at the two shocks. To this end, the respective threshold value has
to be chosen in between the constant values at the left- and the right-hand side of
the respective shock. Regarding the velocity snapshots depicted in Figure 6, we have
chosen the thresholds −390m/s (normalized −0.74) for the right border of the zone
between the shocks (border between cyan and dark blue in the middle plot of Figure
6) and −200m/s (normalized −0.38) for the left border (between yellow and cyan).
Based on these thresholds, the time-dependent shifts are determined by searching the
last value, which is larger than the corresponding threshold, in each column of the
snapshot matrix (each discrete time step).

The shift coordinates obtained from the threshold search do not intersect but
rather bounce off each other; see Figure 7(a). In order to account for the crossing of
the shock waves, the parts after the time of shortest distance between the two curves
are switched and in the intermediate area a linear interpolation is applied. The
resulting shift coordinates (cf. Figure 7(b)) provide the basis for the shift matrices
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(a) Shift coordinates determined via thresh-
old search.

(b) Shift coordinates after correction to ac-
count for the crossing.

Fig. 7. Shift coordinates.

Fig. 8. Error of the sPOD approximation of two crossing shocks: Pseudocolor plots of the
density (left), velocity (middle), and pressure (right).

applied in the sPOD algorithm. In order to satisfy the given accuracy requirement of
one percent, we apply the sPOD algorithm together with a greedy increment of the
number of modes as explained in section 2.2.

We end up with seven modes, four for the left going and three for the right
going wave. The assembled sPOD approximation is nearly indistinguishable from the
simulated solution; the error plots are depicted in Figure 8. The approximation agrees
neatly with the full-order solution which can be comprehended by looking at the error
whose maximum amplitude is around six percent of the maximum amplitude of the
full-order solution. The relative mean error is less than one percent as required.
Note that this could be achieved with just seven modes in total, whereas a POD
approximation needs 51 modes to attain the same accuracy.

The error plotted in Figure 8 reveals structures. First, the shocks are visible.
This is caused by a not strictly constant shock structure due to small variations in
the strength of the shock adaptive filter. The dynamics of this numerical artifact is not
fully described by the used number of sPOD modes. Second, waves in the density are
emerging from the shock crossing and from the initial position of the left shock. The
two extra waves travel with the flow velocity. The steady state condition of the left
shock is slightly perturbed. Small perturbations travel as characteristic waves, so that
this perturbation creates a so-called entropy wave. A similar perturbation is created
by a change of shock filter strength during the shock crossing. These structures in the
error could be removed by adding frames with the flow speeds to the decomposition.
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Fig. 9. 2D vortex pair: Full-order solution (vorticity contour lines at −270, −250, . . ., 270).

3. A two-dimensional model problem. In the last section we have considered
one-dimensional test examples, which provide a big challenge for the classical POD.
The sPOD performs excellently, because its structure is adequate for the transport-
dominated examples.

In this section we want to explore the capabilities of the introduced sPOD algo-
rithm by considering a two-dimensional, transport-dominated, nonhyperbolic example
with nontrivial velocities. We consider a flow governed by the incompressible Navier–
Stokes equations with a vortex pair as initial condition. The initial conditions are
created from two single vortices with vorticity

ω0,i = ωe,i
(
1− (ri/r0)2

)
exp

(
−(ri/r0)2

)
,

where i = 1, 2, ri =
√

(x− x0,i)2 + (y − y0,i)2 is the distance from the respective
vortex core and r0 denotes the vortex size. The size of each vortex is chosen to be
r0 = 0.1 and the centers are at (x0,1/2, y0,1/2) = (±0.1, 0). The strengths are ωe,1/2 =
∓299.5 and the viscosity of the fluid is ν = 1/Re = 1/1000. We consider a periodic
domain to avoid further complication of the boundary treatment for the sPOD. The
dynamical behavior of the vortex pair is simulated by means of the energy conserving,
skew-symmetric scheme described in [33]. The periodic domain is discretized by 5122

equidistant points with a time step of ∆t = 8 · 10−4s with a fractional-step time
stepper. The solution is depicted in Figure 9 by means of a contour plot for different
times. The initial vorticity field induces a movement of the vortex pair in the positive
y-direction. Additionally, a secondary, weaker vortex pair moves in the negative
y-direction with a smaller transport velocity. Due to this secondary vortex, two
different, nontrivial velocities are present. The simulated time is chosen such that
the primary and the secondary vortex pair do not meet again in the periodic domain.
Compared with the linear wave equation from section 2, this example is significantly
more challenging for several reasons. First, we do not know the analytic solution of
this test case. Second, the transport velocities are non-constant and unknown a priori.
Third, the two-dimensional problem not only leads to larger data sets but tests the
applicability in more dimensions.

Before we apply the sPOD algorithm as introduced in section 2, we need to
find proper candidates for the dominant transport velocities. We are looking for
two velocities which we treat as constant, even though this is not strictly true. For
the velocity determination, we again consider the singular values of shifted snapshot
matrices where we only shift in the y-direction. Since the considered case is two-
dimensional, we need to reshape the snapshot matrix as it would be done for the POD.
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Fig. 10. Two-dimensional vortex pair: Left: Velocity scan in the y-direction. The two marked
maxima at −1.1193 and 2.7663 are used for the decomposition. Right: Convergence of the sPOD
measured by the norm of the residual related to the norm of the field. In the inset the ratio of the
largest singular value of the residual and the smallest singular value of the sPOD approximation in
the respective frame is plotted (solid line for the primary, red dashed for the secondary vortex pair).
The horizontal line marks the value one below which the resolved singular values are greater than
those of the residual. The second inset shows the maximal orthogonality error; cf. (11).

The singular values as a function of the transport velocity are shown in Figure 10, left.
The maxima are at −1.1193 and 2.7663, which are used as the transport velocities in
the decomposition of the secondary and the primary vortex pair, respectively.

A decent approximation can be obtained by choosing 14 modes for the primary
and 10 for the secondary vortex pair, so in total 24 modes. The number of modes
is selected by the first method described after the sPOD algorithm in section 2.2. A
decomposition with a large number of modes (here 15 per frame) is calculated and
the modes connected with the largest singular values from both frames are selected.
The decay of the error with this procedure is seen later in Figure 12, right. Moreover,
the chosen number of modes varies during the sPOD algorithm. More precisely, we
start with one mode per frame and add one mode to each frame in each iteration of
the sPOD algorithm until the specified mode number, here 15 per frame, is reached.
The resulting convergence of the sPOD for the two-dimensional vortex pair problem
is depicted in Figure 10, right. In comparison to the pressure pulse example (cf.
Figure 3, left), the convergence is worse but still the relative mean error decreases
to a value of slightly less than 1%. Due to the used constant shift velocities and the
complexity of the transport phenomenon, a much smaller error cannot be expected.
In the insets of Figure 10, right, two further convergence criteria are investigated
which are introduced in the following.

Two important properties of the SVD are the orthogonality of the approximation
to the residual and that the smallest singular value of the approximation is not smaller
than the biggest singular value of the residual. These two properties are essential for
the optimality of the POD. We formulate their analogues for the case of multiple
moving frames:

(11)
〈
ũkl (ṽkl )T , T−ck(R)

〉
F

= 0 and min(Σ̃k) ≥ max(Σkr )

for all k = 1, . . . , Ns. Here R = X− X̃ is the residual between the snapshot matrix X
and the sPOD approximation X̃ =

∑Ns

k=1 T
ck(ŨkΣ̃k(Ṽ k)T ) as output from the sPOD

algorithm (see section 2.2). Furthermore, ũkl and ṽkl are the columns of Ũk and Ṽ k,
respectively. The matrix Σkr is diagonal containing the singular values of T−ck(R)
and 〈·, ·〉F denotes the Frobenius inner product.
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The first inset in Figure 10, right, shows the ratio max(Σkr )/min(Σ̃k) plotted
over the iterations for both the primary and the secondary vortex pair. The criterion
min(Σ̃k) ≥ max(Σkr ) is satisfied from iterations 9 and 12 on, respectively. In the
second inset, the iterations of the maximum relative orthogonality error

max
l


∣∣∣〈ũkl (ṽkl )T , T−ck (R)

〉
F

∣∣∣
‖ũkl

(
ṽkl
)T ‖F ‖T−ck (R)‖F


are shown. Here, the decay is not as clear as for the other criteria, which is due to
a dominance by modes associated with a small weight, while the modes associated
with larger singular values have a much lower orthogonality error. After all, the de-
cay of the mean error appears to be the most appropriate criterion for describing the
convergence.

The first three modes obtained by the sPOD for each transported vortex pair
are shown in Figure 11. The depicted modes correspond to the respective co-moving
frames, i.e., ũkl . For both velocity frames the respective first mode obviously describes
the corresponding vortex pair. The higher modes seem to fulfill different roles in
both cases. When considering the dynamical numerical solution, we observe that the
secondary, down-going pair strongly changes in time; a rotating vorticity distribution
is visible at creation. It looks very much like the second mode; thus, the higher modes
represent the change of shape of the vortex pair. On the other hand, the numerical
simulation results reveal that the shape of the primary, up-going vortex pair changes
less in time. Right after the separation the sharp vortex structure emerges. The
higher modes of the primary vortex pair have a strong weight at the front and rear

Fig. 11. Two-dimensional vortex pair: First three sPOD modes for each transported vortex
pair (top: primary vortex pair; bottom: secondary vortex pair).
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Fig. 12. Two-dimensional vortex pair: Left, middle: Time amplitudes for the first three modes
for each transported vortex pair. Right: Mean error over number of modes (POD versus sPOD).

edges of the pair. These structures seem to account for a velocity correction, since
they induce a translational shift of the primary vortex pair. The velocity correction
is caused by the nonconstant propagation velocity of the vortex pair.

The corresponding time amplitudes of the spatial modes are depicted in Figure
12. The amplitudes are given by the right singular vectors ṽkl , describing the temporal
development of the respective mode ũkl , multiplied by the corresponding singular value
σ̃kl . For large values of t, the first mode dominates the behavior of the primary vortex
pair, while for the secondary pair the first two modes have a nearly similar weight.
Thus, the first and the second mode of the secondary vortex pair both contribute
to its shape. This can be comprehended by considering Figure 11, where it can be
seen that the vortex pair appearing in the first mode seems to fit into the cavity
formed by the structures of the second mode. This agrees with the observation that
the secondary vortex pair depicted in Figure 9 is wider than the vortex pair shown
in the first mode; cf. Figure 11, bottom left. The separation of the two vortex pairs
is completed at about t > 0.15s. The interplay between the modes of the two vortex
pairs is complicated up to that point, but afterward a simpler picture emerges. For
the primary vortex pair, the absolute value of the amplitude of the dominating first
mode decays gradually in time, which reflects the reduction of the vortex strength by
viscosity. The influence of the second mode becomes stronger from roughly t = 0.2
on, i.e., after the full separation. It leads to a reduction of the vortex pair transport
velocity. Also, the third mode contributes to this velocity decrease. In contrast,
the initially negative time amplitude of the first mode of the secondary vortex pair
increases and changes the sign over time. After separation all three amplitudes are
nearly constant; this corresponds to the plausible observation that the friction has less
impact on the secondary than on the primary vortex pair due to the lower velocity
gradient.

While the modes give a clear and intuitive description of the flow dynamics, still
some unexpected structures are visible. Namely, one can also see some stripe struc-
tures in the y-direction, especially at the first mode of the secondary vortex pair; cf.
Figure 11. Our first analysis indicates that this is not due to an incomplete separation
but rather is caused by a nonuniqueness of the decomposition. This nonuniqueness
can be comprehended by the following consideration. If we add a constant offset to one
of the transported quantities, the combined sPOD approximation remains unchanged
if the negative counterpart offset is added to the other transported quantity. Note
that offsets are shift-invariant and, hence, well represented in all velocity reference
frames. The occurring stripes seem to be localized variants of these offsets along the
y-direction. These structures may be removed by an additional, physically motivated
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Fig. 13. Two-dimensional vortex pair: Comparison of full-order solution with sPOD and POD
approximation at t = 0.27s (left: full-order solution; middle: sPOD approximation (9 modes for the
primary, 6 for the secondary pair); right: POD approximation (15 modes)). Left half of each plot:
vorticity contour lines at −270,−250, . . . , 270; right half of each plot: pseudocolor plot.

constraint. Nevertheless, the main structure of the vortex pairs is already captured
quite well by the respective first modes.

The spatial modes and their time amplitudes both provide physically meaning-
ful insights into the dynamics of the vortex movements. Finally, the sPOD is to
be evaluated quantitatively by comparing it to the full-order solution and the POD
approximation. To this end, Figure 13 shows the full-order solution, the sPOD approx-
imation (9 + 6 modes), and the POD approximation (15 modes), each for a constant
time t = 0.27s. It is hard to see a difference between the sPOD approximation and
the full-order solution, since they match almost exactly. In contrast, even though the
POD approximation captures the main structures of the vortex pairs quite well, it
reveals some unphysical structures in the inside as well as a blurred surface of the
primary vortex pair (top) and, furthermore, some spurious edges in the secondary vor-
tex pair (bottom). The superiority of the sPOD algorithm can also be comprehended
by considering Figure 12, right, where the mean error is plotted over the number of
modes for the POD and the sPOD. The sPOD mean error is significantly smaller than
the POD mean error for all tested numbers of modes although the difference is not
as striking as in the wave equation example; cf. section 2.2. This is not surprising,
since the one-dimensional example is ideal for the reduction by the sPOD, while the
vortex pair problem provides some additional challenges. Further, the small transport
distance compared with the relatively large interaction time at the beginning reduces
the difference between the methods.

It should be noted that very high numbers of modes may be problematic for the
described method. The separation of velocity frames builds on low-rank approxima-
tions so that the algorithm is expected to become ineffective for a large number of
modes.

All in all, the sPOD method performs very well despite the nontrivial and non-
constant velocities of the two-dimensional vortex pair problem and further delivers
modes which allow a physically meaningful interpretation.

4. Summary and outlook. We have presented the sPOD as a new model
reduction approach. It generalizes the common POD by allowing for time-dependent
shifts of the modes. More precisely, given a snapshot matrixX and transport velocities
c1, . . . , cNs

, the sPOD constructs an approximate decomposition of the form

(12) X ≈
∑
k

T ck
(
ŨkS̃k(Ṽ k)T

)
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with low-rank matrices ŨkS̃k(Ṽ k)T and shift operators T ck which shift every column
of their respective arguments by an amount defined by ck. Due to the shifts, the sPOD
is especially well-suited for transport-dominated phenomena. Even problems with
multiple shifts can be successfully separated and decomposed based on the iterative
sPOD algorithm which is based on truncated SVDs of shifted snapshot matrices and
shifted residual matrices. The algorithm can easily be generalized to nonconstant
velocities as demonstrated in the example of two crossing shocks.

For the case Ns = 1 and c1 = 0 in (7), the common POD is recovered and
hence the sPOD delivers good low-dimensional representations for problems where
the POD is applied successfully. Moreover, for the linear wave equation we have
demonstrated that the sPOD is able to describe transport phenomena exhibiting
sharp moving structures with the minimal number of modes and recovering the ana-
lytic solution up to machine precision. In contrast, for these examples the common
POD performs poorly due to the slow singular value decay. In general, for exam-
ples where the snapshot matrix can be perfectly described by a decomposition of the
form (12), the analytic solution is a fix point of the sPOD iteration. However, in
general there may be more than one fix point and it is a priori unclear to which one
the sPOD iteration converges. This nonuniqueness has been investigated numerically
for the wave equation with two transported quantities by adding a redundant veloc-
ity c3 = 0. Still the sPOD iteration reduces the error up to any given achievable
tolerance, although it does not detect that there is a redundancy in the number of
modes.

We have tested the sPOD algorithm also for more complex examples, where the
analytic solution is unknown. For the example of two crossing shock waves in one
dimension and for the vortex pair in two dimensions, the sPOD shows a better per-
formance than the POD in number of modes needed to ensure a certain accuracy.
Moreover, in the co-moving frames the sPOD modes lend themselves a clear and
intuitive description as opposed to the POD modes in the lab frame.

The application of the sPOD depends on the transport velocities ck. We have
discussed methods for determining good values for the ck in cases where they are not
known from physical considerations, namely, for instance, by peak or front tracking or
by a singular value maximization. In these cases the sPOD can be computed purely
based on snapshot data. We have also investigated numerically the case when the
velocities are slightly under- or overestimated. For the linear wave equation example
with two moving quantities, the sPOD needs a few more modes (depending on how
strong the velocities are disturbed) but the singular value decay is still much steeper
compared with the POD. All in all for practical applications, the sPOD qualifies as
an alternative to the POD for transport-dominated phenomena yielding a stronger
singular value decay and physically more intuitive modes.

The results obtained so far motivate further development and generalization of
the sPOD. In order to ensure local optimality, the decomposition (12) may be directly
reformulated in terms of an optimization problem. This is likely to be more expensive
than the algorithm proposed here but in return guarantees local optimality. More-
over, an extension to nonperiodic boundaries is necessary to be able to handle more
realistic settings, e.g., with reflecting and nonreflecting boundaries. In addition, the
considerations made so far only apply to the mode decomposition of the snapshot ma-
trix. How the sPOD modes can be used in order to obtain a dynamic reduced-order
model with an efficient offline/online decomposition needs to be investigated in the
future.
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